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J Adlert, A Brandtt, W Jankes and S Shmulyiant 
t Depanment of Physics. Technion-Israel Institute of Technology, Haifa 32W0, Ismel 
t Depanment of Applied Mathematics, Weirmann Institute of Science. Rehovot. 76100, Israel 
5 I n s t i ~ t  f i i  Physik, lohannes Gutenberg-IJniversit% 55099 Maim, G e b y  

Received 18 May 1995 . .  

Absbaet The three-state Potts antiferromagnetic model on the triangular lattice (3parr) has 
a we& first-order transition in the pure case. The first-order nature follows from analytic 
arguments and while it has been observed in some simulations, the precision of (and intemal 
disagreement between) these observations hasleft much to be desired. The 3PAFT is the only 
two-dimensional nearest-neighbour Potu model with an,ordered phase that does not have~an 
infinite degeneracy, that remains without an exact value for i s  critical point. This model is 
expected to exhibit interesting glaisy behaviour and a possible crossover to a second-order 
transition upon dilution. A careful characterization of the nature of the pure transition is needed 
in order to explore the physics of the dilute model. We find clear indication of a first-order 
transition at T, = 0.62731 * 0.00006, using a cluster method that can be extended to the dilute 
case and histogram reweighting analysis. Our estimate is two orders of magnitude more precise 
than previous simulations and falls within the error bounds of a reanalysis of existing series 
expansion (T, = 0.628 0.004) reponed on herein. 

1. Introduction 

The three-state Potts model on' the @angular lattice (~PAFT) is a very special case among 
two-dimensional Potts models. Unlike the q > 3 antiferromagnetic models on the square 
lattice and the q > 4 antiferromagnetic models on the triangular lattice there is no infinite 
ground-state degeneracy or lack of finite-temperature order, rather a simple set of six ground 
states (Schick and Griffiths [ 11). Early Monte Carlo simulations by Grest [Z] and Saito 131 
and series expansion combined with heuristic arguments put forward by Enting and Wu [4], 
indicated that the transition is of first order. Baxter (private communication) has argued that 
exact considerations imply that this system cannot have a finite temperature second-order 
transition. 

We begin this paper by presenting our motivation for studying this model and for 
selecting the techniques we have used. We will then review extant numerical studies of 
both the pure and dilute systems, describe our techniques of both simulation and analysis 
and present our new results. 

Our original motivation for the 3 P m  project was the exploration of several aspects 
of the (site) dilute 3 ~ m  system that are of current physical interest. However, study of 
the dilute model requires careful characterization of the pure transition. In this paper we 
will only discuss the pure model in detail, but since our eventual aim of studying the dilute 
model is relevant to the results presented below as justification for selection of the numerical 
techniques we will make some general comments on the dilute systems. One of the aspects 
of interest in the dilute model is at small dilution. Here, there might be a crossover to 
a second-order transition. Such crossovers to second-order transitions occur in- related 
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models such as the dilute Baxte-Wu model (Novotny and Landau [5 ] ,  Novotny and Evertz 
[61), and the second-order transitions in some cases have king exponents for reasons not 
well understood to date. In the Baxter-Wu case it is a crossover between different types of 
second-order transitions and in the 3 P m  it would be first to second order and thus of interest 
both intrinsically and as a comparison. To explore the small dilution case a method that 
enables a high quality characterization of the first-order transition is needed so that we can 
determine if the first-order transition will extend to the dilute case (contrary to expectations) 
and if not how the crossover will take place. Hence we chose to use a histogram reweighting 
approach, which is capable of detecting even weak first-order transitions. The second aspect 
of interest is at larger dilution where there are long relaxation times and might be some 
partial order and glassy effects. Here there are applications to systems such as quadrupolar 
glasses (Reger and Binder [7]). The zero-temperature behaviour of this model was studied 
by Adler et al [8, 91. Attempts to study the dilute system have been made (Fried [lo]), on 
samples up to 36 x 36. They were limited by the long relaxation times and the impossibility 
of reaching system sizes that might be adequate to probe the long-range connectivity that 
is an essential part of the partial order. but did suggest that further investigation would be 
worthwhile. To increase the system size a multiscale (in particular, cluster) approach is 
desirable. Thus in order to explore both small and large dilution in this model we decided 
to develop a cluster algorithm combining this with histogram reweighting analysis on the 
results. 

While searching for a study of the pure system to calibrate our new techniques it became 
clear that we would have to undertake this first ourselves, as the existing studies did not 
converge to a single estimate with enough significant figures for comparison purposes. 
Although this was a detour, we did feel that such an apparently simple model should not 
be the only two-dimensional Potts model without a precise characterization of its phase 
transition. Thus we have carried out this characterization with extreme care and have 
added several significant figures to previous estimates. Existing simuIations of the first- 
order transition in the pure system give different results and use very different simulation 
methods. Before presenting these results, a word about units. We write the Hamiltonian of 
the ~PAFT model as 

with J < 0. Many of the previous measurements were made in terms of Jlke, and thus we 
will use the notation Tt for the transition point in these terms and relate to U = eK, the low- 
temperature series expansion variable, where needed for comparisons ( K  = J l k B T  is the 
high-temperature series expansion variable). By studying the energy and the magnetization 
Grest [2] observed a first-order transition near Tt % 0.63 from a 51x51 lattice. Saito [3] 
measured a transition temperature of Ki % -1.585 (Tr X 0.631) from a 60x60 lattice, and 
more recently Ono and De Meo [l l]  using an interface method obtained & % 0.625 from 
lattices up to 40 x 120. There is also~a series expansion study by Enting and Wu [4] who 
generated short series for the partition function, order parameter and susceptibility in  the 
variable U. Strictly speaking, since this is a first-order transition standard Dlog Pad6 methods 
should not give the exact transition temperature (Adler and Privman [12]), however, Briggs 
et al [I21 (as well as analyses by one of the authors of ferromagnetic large-q Potts models 
series developed by Schreider and Reger [13]) show that Dlog Pad6 gives a divergence at 
some associated singularity that is remarkably close to the exact transition point (agreement 
of several significant figures being seen for weak first-order transitions.) Enting and Wu 
quoted U ,  = 0.204 i 0.003 (or & = 0.629 f 0.005) from two analyses and 0.203 i 0.002 
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(or & = 0.627 i 0.004) from another. In addition to the simulation results we will also 
report below on a reanalysis of these series using the so-called M1 and M2 methods (Adler 
eral [14]). 

2. The algorithm 

Let us now describe the selection of the algorithm for our simulation which, as explained 
above, is a cluster method that was designed with eventual application to the dilute system 
in mind. Although such a cluster method should not he expected to be more efficient for 
a first-order transition than a simple one we shall show below that it does appear to be 
somewhat faster here too. 

2.1. Description 

Several different simulation methods were used in the development phase, including a 
simple Metropolis and heat bath, as well as different cluster approaches. While developing 
the latter, we sought for ways to adapt the Swendsen-Wang (sw) [15] type ideology to 
the 3PAFT framework, which appeared to be non-trivial. In the original sw algorithm, 
designed for the ferromagnetic Ports model, each lattice bond is, in turn, either ‘frozen‘ 
or ‘deleted’, through setting the values of the corresponding coupling constant to infinity 
or zero, respectively, according to a simple rule which maintains detailed balance with 
respect to the original Hamiltonian. After similarly treating (’killing’) all the bonds, one 
is left with a number of independent ferromagnetic clusters, allowing for an easy and fast 
simulation. In the framework of the 3 P m ,  however, a naive application of the sw technique 
would yield clusters of non-regular structure, since the complete (antiferromagnetic) order 
in this case may not be propagated by means of a single bond. As a solution to this 
problem, we developed the following cluster algorithm which successfully copes with the 
order propagation task. In the figure which accompanies the description below the three 
states of the 3 P m  spins are indicated by the letters A, B and C. 

At first, an antiferromagnetic analogue of the sw rule is applied to the lattice bonds 
in some prescribed order until a particular bond happens to get frozen (near the transition 
temperature, that typically takes only a few steps). That bond, complete with the sites it 
spans, comprises a cluster seed. Next, for each of the two sites or, coupled to both i and j 
by living bonds (or E (k, 1 )  in figure I@)),  the stochastic decision about their simultaneous 
killing is made: both bonds are deleted with probability 

and frozen with probability 

Pf = 1 - P d .  (2.2) 

Clearly the bond freezing takes place only if the inclusion of the site (Y in the ,?wing cluster 
preserves the complete antiferromagnetic order. Newly frozen bonds are further used for 
similarly enlarging the cluster by means of additional sites (figure l(b)), etc. The formation 
of the cluster terminates at a stage when none of the frozen bonds has a neighbouring 
site coupled to it by two living interactions (figure l(c)). The consequent clusters are 
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Figure 1. Stages of the ZLA coarsening on a 6 x 6 lattice: ( a )  processing spins sx and s, 
neighbouring to the seed, (b) processing spins s,,, and s, neighbouring to bonds included in the 
cluster on the previous stage, (c )  end of the cluster formation, (d )  end of coarsening. Bold lines 
denote frozen bonds: deleted bonds are nor.shown. The leuen A, B and C represent the three 
possible spin states. 

constructed, in a similar manner, of sites not contained in the already formed clusters. The 
procedure continues until no new cluster seed may be chosen (figure l(d)). 

At this point, the whole lattice is partitioned into a number of antiferromagnetic clusters 
usually coupled by quite a few living bonds. In this ket-up, each cluster may easily be 
simulated by choosing one of the six permutations of the spin states within the cluster 
(corresponding to the six ground states) according to its remaining connections with other 
clusters. This allows for performing an arbitrary number of Monte Carlo sweeps over all 
the clusters. Restoring all lattice bonds to their original states completes the iteration of the 
algorithm. 

For the hmsition temperature simulations, we selected the above algorithm with a single 
cluster-by-cluster Monte Car10 sweep within each iteration. It appeared thar additionally 
employing single-site sweeps (intended to locally constmct a basis for an efficient clustering) 
was not beneficial, and since implementing just a pure cluster algorithm is computationally 
more efficient this sufficed. The statistical validity of the algorithm as well as details of the 
other algorithms are discussed elsewhere in depth (Shmulyian [16J), with a brief outline of 
the proof of &detailed balance being given below in the appendix. 

The algorithm developed may easily be extended to the case of an arbitrary site dilution; 
the efficiency of the relevant implementation is cumendy being investigated. 

2.2. Survey of preliminnry experiments 

The selection process was based in part on insight gained by watching the approach to 
equilibrium of different algorithms at different temperatures. The motivation of the eventual 
study of the dilute model also played a role, and we freely admit that we may not have 



Three-state Ports antiferromagnet 5121 

selected the one and only optimal algorithm but rather one good for our purposes. This 
was done with interactive visualization (in C with X11 graphics for the algorithm and in 
FORTRAN with PGPLOT for the analysis routines) ,based on the ideas proposed by Silverman 
and Adler [17] (1991) for animated simulated annealing. 

At low temperatures the  cluster^ algorithm was clearly superior to a single-site 
Metropolis. For example, starting from a random 60 x 60 configuration at T = 0.45 
the former algorithm reached the global minimum ground state in less than 200 iterations, 
whereas the latter always remained in a local minima (multidomain) state even after several 
thousands of sweeps. 

Near the transition slowing down (even for the pure model) was severe with the 
Metropolis algorithm as could be expected. For example, an interactive run on the 30 x 30 
lattice with a random hot start within 10% below T never seemed to equilibrate in any 
watchable time. Close to the transition we also examined the autocorrelation time of the 
magnetization r M  - LL and found for relatively small lattice sizes an 'effective exponent' 
of z = 2.5. Of course, for large lattice sizes we expect asymptotically an exponential 
divergence of SM if the transition is of first order. The cluster algorithm under the same 
conditions reached equilibration in about 10 minutes on an IBM RISC 320H but gave an 
'effective exponent' of z = 2.1, not really so much lower. It is something of a puzzle 
why the latter algorithm behaved so well under simple observation near the transition point, 
especially since its complexity is O ( N )  per iteration, the same as the Metropolis. We can 
only conclude that the kind of large-scale changes that it allows have a much larger effect 
than the z measurement can encompass, and the designed cluster algorithm certainly passed 
the most important test of enabling us to complete the calculation within the computer time 
that we could access. , .  

3. Results 

Our calculations were made (using periodic boundq conditions) on samples ranging from 
30 x 30 to 198 x 198 on several machines including Sun-SPARC, IBM NSC/6000 320H. 
370 and 590 and a Meiko parallel machine with i860 processors. The results presented 
below are based on detailed analysis of samples 60 x 60 and larger, with run times ranging 
from lo6 iterations for the smaller ones to several times IO5 for the larger. 

The raw data of our simulations are time series of the energy, The evolution plots in 
figure 2 show our data for the two largest lattices of size 168' and 198'. Since we observe 
a quite pronounced flipping between the ordered and disordered phase already these plots 
provide quite convincing evidence that the transition is indeed of the fist-order type. In the 
following we shall present a finite-size scaling analysis assuming a first-order transition. 

To a given time series of the energy E = Ve we have applied standard reweighting 
techniques [l8] to compute the average energy per site (e), the specific heat C = 
KzV((ez)-(e)z), and the Binder parameter B = 1-(e4)/3(e2)' as afunction of temperature. 
Basically the reweighting method relies on the fact that *e energy distribution P K ~ ( E )  
(normalized to unit area) at inverse temperature KO can be written as 

P,,,(E) = S2(E)e-KoE/Z(Ko) 

with a~ temperature independent density of states n ( E ) .  It is then easy to see that an 
expectation value (f(E))(K) can, in principle, be calculated for any K from 
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Figure 2. Energy rime series show- 
ing pronounced Rips benveeo the 01- 
der4 and disordered phase. (a) 

,- 2wow 3oMop (OOOCO sMmo L = 168,T = 0.62755. (b) L = 
h r a U O W  198. T = 0.6276. 

For discrete energies the integrals have to be replaced by summations, and to keep the 
notation short we have suppressed the lattice-size dependence of PKo(E). In practice, since 
the wings of Px,(E) usually have large statistical errors, one expects (3.2) to give reliable 
results only for K near KO. 

In order to avoid bias problems in the reweighted data the error bars are estimated by 
jack-knife blocking [19] of the time series. This involves dividing the time series into a 
number N B  of overlapping blocks (each consisting of a fraction 1 - 1/NB of the data), 
computing the observables for each block separately and then taking the variance over 
these N B  estimates. In the last step the mvial correlation between the blocks caused by the 
double counting can be taken into account exactly. For the lattice sizes where we performed 
several runs at different simulation temperatures we computed error-weighted averages over 
these runs; see, for example, the discussion by Holm and Janke [20]. The resulting curves 
together with their error bars for the specific heat and the Binder parameter are shown in 
figure 3. There is a feature of an apparent shoulder in some of the specific heat data, which 
often happens when applying (3.2) too far from the simulation point. Despite this it is 
straightforward to apply the reweighting method to obtain the extrema of these curves with 
high precision. Again we have estimated the extrema and their statistical errors~ for each 
run separately and then applied error-weighted averages to obtain the final values for each 
lattice size. 

3.1. Finire-size scaling 
Assuming a first-order phase transition we have tried to fit these data to the asymptotic 
finite-size scaling ansatz [21] 

X = a -b b/V (3.3) 

where X stands for the specific-heat maximum Cm/V, the Binder-parameter minimum 
E h ,  the corresponding locations of these extrema Tc,, and TB,,", or ~ ( T B , , )  and B(T,w) .  
As a result we obtain consistent fits with quite acceptable goodness-of-fit parameters Q if 
we exclude the L = 60 and L = 78 data. Our estimates of a and b are collected in table 1. 

In figure 4 we show the fits to the pseudo-transition temperatures Tcm, and T B ~ " .  Here 
the parameter a gives the transition temperature in the infinite volume limit, a = T,. By 
averaging our two results for T, we obtain the final estimate 

T, = 0.627310=k0.000058 = 0.62731 ~0.00006 (3.4) 
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Figure 3. The specific heat and Binder 
parameter as a function of the tempemture 
far various lattice sizes. 

Table 1. Results of linear leastsquare fits to the finite-size scaling ansatz X = n + b/ V, where 
X denotes the quantities in the first column and V is the lattice volume. 

X a b X ~ / D O F  Q 

Tcm, 0.627 305(58) 7.31(99) 0.37 0.78 
rami. 0.627314(58) 2.94(98) 0.40 0.75 

cmax/ v 0.002 76( 12) 24.2U.9) 1.5 0.21 
C(Tam,n)/ V 0.00260(10) 19.1(1.5) 1.5 0.21 
Bmi" 0.641 7(11) -220(18) I .4 0.25 
B(Tcm) 0.643 l(9) -175(15) I .4 0.25 

which is compatible with, but considerably more accurate than, previous estimates in the 
literature. 

The fits to the data of the specific heat and Binder parameter are shown in figures 5 
and 6. Here standard finite-size scaling theory of first-order phase transitions relates the 
parameter a to the infinite-volume energies in the ordered and disordered phase, e, and e d .  
The results for the specific heat are [ZZ, 231 
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Figure 4. Finite-size scaling of TC., 
and Ts,, . 

Yn Figure 5. Finite-size scaling of 
CmuIV. 

Figure 6. Finite-size scding of B,b. 

and [24] 

(3.6) 
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For the Binder parameter one finds [22, 231 

and [23] 

Solving the equations for Cm/ V and B d n  for e, and ed we obtain 

and 

r .  1 

(3.9) 

(3.10) 

where C g ) / V  and Bg) denote the infinite volume limits, i.e. the parameter a in table 1. 
Inserting these numbers in (3.9) and (3.10) we find 

Ae = 0.0659 f 0.0015 
e, =0.212f0.011 
ed = 0.278 i 0.012. (3.11) 

As a check we can now insert the values for e, and ed in (3.6) and (3.8), yielding 
in the infinite volume limit C(TB,,)/V sz 0.00257 and B(Tc-) x 0.6433 in very good 
agreement with the estimates obtained from the fits in table 1. 

3.2. Histogram analysis 

As a useful cross-check we have also analysed the energy histograp P ( e )  which for 
the quantities considered so far contain almost the-same information as the time series 
(only detailed infomation about autocorrelation times is lost). Furthermore, they offer 
an altemative determination of pseudo-transition temperatures whose finite-size scaling 
behaviour contains no power-law terms [25]. Of course, exponentially small corrections 
which have always to be added are also visible here. The method [23, 25, 261 consists 
of first reweighting a given histogam to a temperature Teqb where both peaks are of equal 
height. This is usually the case around Tc,,. The location of the minimum between the two 
peaks is then used as an energy-cut parameter ewL which is kept fixed in the next step. Here 
one fnrther reweights the histogram until at a pseudo-transition temperature Tw;w the weight 
of the ordered phase, WO = C,,,, P(e) ,  equals N times the weight in the disordered 
phase, W, = Ce,c,, P(e ) ,  where N is the number of ordered ground states, i.e. in our 
case N = 6. The typical histogram shapes encountered in this procedure are shown in 
figure 7 for L = 168 and L = 198. Even though the transition is only very weakly of first 
order, we get estimates for Tw;w that are fully consistent with our earlier estimate (3.4), e.g. 
T w ~  = 0.627230(59) for L = 168 and Tw;w = 0.627262(65) for L = 198. The remaining 
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Figure 7 .  Double-peaked input histogram (full curve) reweighted to equal peak height (broken 
curve) and to a weight ratio 6 1  with the pronounced peak in the ordered phase (full curve). 
(a) L = 168,T,. = 0.62755, Tqj, = O.627581,T,iw = 0.627230. (b) L = 198,T,. = 
0.6276, T,, = 0.627511, T& =0.627262. 

small discrepancies with the infinite volume limit should be explainable by exponentially 
small conections. Our data are, however, obviously not good enough to allow for such a 
detailed andysis. 

From the equal-height histograms we can read off the positions of the maxima, defining 
the finite-lattice estimates of e, and ed shown in figure 8. The data obviously allow a perfect 
infinite volume extrapolation in 1/L. Even though theoretically one expects a cross-over 
to a 1 / V  behaviour for very large lattice sizes [U], here we used the effectively seen 1/L 
behaviour to obtain from the least-square fits the infinite volume estimates 

e, = 0.212 f 0.004 
ed = 0.277 rt 0.002 
Ae = 0.065 f 0.005 (3.12) 

in extremely good agreement with the values derived from the finite-size scaling of C,, 
and &in. 
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Finally, the ratio P,i. f Pm, of the histogram minimum P,in between the two peaks 
and the e ually high maxima P,, can be used as a finite-lattice definition of the interface 
tension U!:) between the ordered (for e c ecut = e,iD) and disordered (for e > emf) phase 
[28, 291, 

2.7;:’ = lOg(Pm/P~,) /L (3.13) 

Here the factor two accounts for the periodic boundary conditions which always enforce an 
even number of ordered-disordered interfaces. Our results of 2u::) = 0.0052(3), 0.0059(4), 
0.0048(5), 0.0053(7), 0.0037(5), 0.0052(8), 0.0050(7) for L = 60,78.102,120,144, 168, 
198 show surprisingly little lattice-size dependence. As the final value we therefore quote 
the overall mean, 

2u0d = 0.0050 i 0.0005 (3.14) 

where here the error estimate is taken as the variance over the seven lattice sizes. 

4. Se& expansion analysis 

We carried out a reanalysis of the Enting-Wu series using the MI and M2 methods 
introduced in [14]. To recapitulate our earlier discussion, these have no more reason to 
work for a first-order transition than do the usual Pad6 approximants on which they are 
based, but the precision with which they give critical points for the first-order transitions 
of the ferromagnetic Potts models is extremely good. We .find a very clear indication of 
good convergence at uI = 0.2035 & 0.0020 (or TI = 0.628 + 0.004). The relative error 
is similar to that seen in the ferromagnetic Potts models but the series are shorter. These 
results confirm the Enting-Wu analyses. 

5. Conclusions 

We have clearly confirmed the first-order nature of the transition, with a method that should 
be sensitive enough to describe a cross:over to second order if this should occur on dilution. 
Our final overall result for the transition temperature is in broad agreement with the earlier 
study of Grest [2] (who only quoted two significant figures) but very much more precise. 
The other early simulations all claimed three figures of precision that differ from ours 
in the third figure, but we were unable to deduce error bounds from their papers (thus 
we cannot comment on whether their values include the precise one). The closest earlier 
results are those from the series studies (both our reanalysis and the original Enting-Wu 
numbers) which do include our precise value within their range. This shows (i) that the 
error estimates on the series values are realistic and (ii) that while an eleven term series 
is superior to the older small sample simulations, it cannot compete with a precise Monte 
Carlo study made with the recently developed greatly improved techniques. Both (i) and 
(ii) are consistent with the picture seen for ferromagnetic n-vector models and percolation 
[30, 311. Our samples are larger, but not so much larger than those of the simulations 
of [ll], rather we think that it is our superior cluster simulation and histogram analysis 
methods (and substantially higher statistics) that have enabled us to gain the extra precision. 
It should be noted that the results of [ l l ]  an below all the other calculations and the fact 
that o m  are closer to the central value of the series leads us to believe that our result of 
Tr = 0.62731 i 0.00006 is a reliable and precise evaluation of the critical point for the 
3PAFr. 
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Appendix. Proof of detailed balance 

The statistical validity of the cluster algorithm described in section 2 is a special case of the 
following well known result due to Kandel and Domany [32]. Replacing the Hamiltonian H 
by one of the Hamiltonians HI, . . . , HN in probabilities PI, . . . , P N ,  respectively, maintains 
detailed balance if 

(where S is the configuration at the time of the replacement) provided qi are independent 
of S, and ELl P; = 1. 

In the case under consideration, it suffices to prove the validity of the basic step of 
including a new site (for instance, the site k in figure l (a) )  in a growing cluster. Let 
H ( S ) / T  = -K&, - K 6 , , , , + H U / T ,  where H. denotes the terms which remain unchanged 
upon the site k processing. Then the Hamiltonians HI@) and Hz(S) corresponding to the 
cases of deleting, and freezing, respectively, may be defined as follows: 

HI (S) = Hu 
HZ(S) = w . &*,& + w  . ~ S S k . S ,  + H!d 

and it is readily seen that the corresponding probabilities PI = pd and Pz = pr (where p d  
and p ,  are defined by (2.1) and (2.2), respectively) satisfy (A.l) with 41 = eK, q2 = 1 -eK. 
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